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1 The Problem Description

Real-time computing is a wide open research area of intellectually challeng-
ing computer science problems with direct payoff to current technology. In
the current state of the art, there are few results to enable designers to han-
dle the timing constraints of real-tiine systems in an effective manner, and
there is not enough emphasis being olaced on building the proper scientific
underpinnings to achieve these needed results. Hence, this paper has six
major objectives. They are:

e to convincingly argue that reel-time computing is a separate, scien-
tific discipline that is not being comprehensively covered by any other
discipline such as operations research or computer science,

o to discuss the fundamental scientific issues of real-time computing,

e to briefly summarize the current state of the art in real-time com-
puting,

e tostate and then dispel the most common misconceptions of real-time
computing,

e to encourage increased research in real-time systems, and

e to propose a research agenda for avoiding a crisis in the next genera-
tion real-time computing syst=ms.



Real-time computing is that typ- of computing where the correctness of
the system depends not only on the logical result of the computation, but
also on the time at which the resul's are produced. Real-time computing
systems play a vital role in our socie.y. Examples of current real-time com-
puting systems are command and rontrol systems, nuclear power plants,
process control plants, flight control systems, space shuttle and aircraft
avionics, and robotics. Current real-time systems are expensive to build
and their timing constraints are ve-ified with ad hoc techniques, or with
expensive and extensive simulations. Minor changes in the system result in
another extensive round of testing. Different components of such systems
are extremely difficult to integrate 'vith each other, and consequently add
to the cost of such systems. Million: (even billions) of dollars are currently
being spent (wasted) by industry 2nd government to build today’s real-
time systems. The current brute for:e techniques will not scale to meet the
requirements of guaranteeing real-t me constraints of the next generation
systems.

The next generation real-time systems will be in similar application
areas as current systems, but will be more complex in that they will be dis-
tributed, contain highly dynamic and adaptive behavior, exhibit intelligent
behavior, have long lifetimes, and be characterized as having catastrophic
consequences if the logical or timing constraints of the system are not met.
Examples of these more sophistica ed sjstems are the autonomous land
rover, controllers of robots with ela: tic joints, systems found in intelligent
manufacturing, the space station, ¢ nd undersea exploration. Two major
forces are pushing real-time systeris into the next generation. First, is
the rapid advance in hardware and, the second, is the need for artificial
intelligence in real-time systems. 7T hese forces are exacerbating the diffi-
cult scientific and engineering proble ms faced in building real-time systems.
These two driving forces are adding complex entities that have to be inte-
grated into current and future applications, but the required design, anal-
vsis, and verification techniques for iccomplishing this have not kept pace.
For example, hardware (and softwire) technology has made distributed
computing and multiprocessing a relity, and soon there will be many net-
works of multiprocessors. Howevei, almost no fundamental or scientific
work has been done in designing and verifying a real-time application’s
timing requirements when that appl.cation is distributed across a network.
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As another example, Al systems exhibit a great deal of adaptability and
complexity, making it impossible to precalculate all possible combinations
of tasks that might occur. This precludes use of static scheduling poli-
cies common in today’s real-time systems. New approaches are needed for
real-time scheduling in such systems including on-line guarantees, and in-
cremental algorithms that produce better results as a function of available
time.

Section 2 discusses the unique challenge of distributed real-time sys-
tems, and provides a brief glimpse of the current state of the art. Section
3 states and attempts to dispel several of the common misconceptions con-
cerning real-time systems. Section 4 presents a research agenda for achiev-
ing the goal of a more scientific basis for real-time systems. Finally, section
5 presents the overall conclusions of the report.

2 The Challenge Of Real-Time Computing
Systems

2.1 Overview

Currently, a principle idea in the management of large scale systems is to
hierarchically decompose the system into modules which are realizations
of the abstract data type model. Although this methodology allows us to
reason about the correctness of computation at each level of abstraction,
there have been no provisions to support the reasoning about time and
reliability abstractions, two vital aspects of real-time systems. To develop a
scientific underpinning for real-time systems, we are faced with the difficult
scientific challenge of creating a set of unified theories and technologies
which will allow us to reason about the correctness, timeliness and reliability
at each level of abstraction, and to combine the results of each level into
results on correctness, timeliness and reliability for the integrated system.

The goal of building a science of large scale real-time systems will re-
quire new research efforts in many distinct and yet related areas such as
those discussed in Section 2.2. While each of these areas contains well
developed theories and technologies, none currently contains theories and
methods which address the central issues in real-time systems: a coher-



ent treatment of correctness, timeliness and fault tolerance in large scale
distributed computations.

2.2 Research Issues and the State of the Art

Specification and Verification

The fundamental challenge in the specification and verification of real-
time systems is how to incorporate the time metric. Methods must be
devised for including timing constraints in specifications and for establish-
ing that a system satisfied such a specification. The usual approaches for
specifying computing system behavior entail enumerating events or actions
that the system participates in and describing orders in which these can
occur. It is not clear how to extend such approaches for real-time con-
straints. It is also not clear how to extend programming notations to allow
the programmer to specify computations that are constrained by real-time.

Some researchers advocate formulating real-time specifications by aug-
menting the system state with an additional clock variable [21]. This allows
extant specification and verification methods to be used but raises the ques-
tion of which-if any-actions should cause the clock to be incremented. The
question is subtle because actions can be executed in parallel. Other re-
searchers (e.g., [14,22]) give special treatment to the time metric, requiring
new schemes for verifying properties involving time. The method of [14]
using Real Time Logic allows true parallelism to be handled; the method of
[22] adds time to traces, permitting a denotational model for a timed ver-
sion of CSP. By investigating alternative semantic models and using them
to model real systems we should learn what is the right balance hetween
expressiveness and abstraction and what is easiest to use.

In general, the inclusion of a time metric may create subtleties in the
semantics of concurrency models (e.g., see [22]) and complicates the veri-
fication problem. Whereas the proof of non-interference is the major veri-
fication task in extending sequential systems to concurrent systems based



on interleaving. the verification of real-time systems will require the sat-
isfaction of timing constraints where those constraints are derived from
the environment and implementation. Consequently, a major challenge is
to solve the dilemma that verification techniques abstract away from the
implementation, but it is the implementation and environment which pro-
vide the true timing constraints. The result is that we need a quantitative
(e.g., deadlines, repetition rates) rather than the qualitative analysis (e.g.,
eventual satisfaction) that is typically handled by current verification tech-
niques. On the other hand, the partial synchrony of real-time systems that
results from the presence of timing constraints may open up a whole new
class of distributed control algorithms and inspire novel verification tech-
niques. Real-time systems lie somewhere between the relatively well-studied
fully synchronous and fully asynchronous systems, and there is a great chal-
lenge ahead in the modeling and verification of systems that are subject to
timing constraints. In addition, to deduce properties of the whole system
from properties of its parts and the way these parts are combined, we must
characterize a way to compose the real-time constraints and properties of
parts to synthesize them for the whole. For real-time properties, the parts
interact in ways that depend on resource constraints. Thus, aspects of the
system that are usually ignored when real-time is not of concern, come into
play. This again suggests that a new set of abstractions must be devised
for real-time systems. For example, fairness which is frequently used when
reasoning about concurrent and distributed systems is no longer an appro-
priate abstraction of the way processes are scheduled when real-time is of
concern.

Another problem that will be encountered is dealing with the state ex-
plosion problem found in verification techniques. Techniques for abstracting
many states into a higher level state are necessary to tackle this problem.
This is a difficult problem even when timing constraints are not included.

Real- Time Scheduling Theory

While specification ard verification concerns the integrity of the system



with respect to the specification, scheduling theory addresses the problem of
meeting the specified timing requirements. Satisfying the timing require-
ments of real-time systems demands the scheduling of system resources
according to some well understood algorithms so that the timing behavior
of the system is understandable, predictable, and maintainable.

Scheduling theory is not restricted to the study of real-time systems or
even general computer systems. It also arises in the study of manufactur-
ing systems, transportation systems, process control systems, and so on.
However, it is important to realize that the real-time system scheduling
problems are different from the scheduling problems usually considered in
areas of operations research. In most operations research scheduling prob-
lems, there is a fixed system having completely specified and static service
characteristics. The goal is to find optimal static schedules which minimize
the response time for a given task set. In many real-time computing sys-
tems, there is generally no incentive to minimize the response time other
than meeting the deadlines. The system is often highly dynamic requiring
on-line, adaptive scheduling algorithms. Such algorithms must be based
on heuristics since these scheduling problems are NP-hard. In these cases,
the goal is to schedule as many jobs as possible, subject to meeting the
task timing requirements. Alternative schedules and/or error handlers are
required and must be integrated with the on-line scheduler. One primary
measure of a scheduling algorithm .is its associated processor utilization
level below which the deadlines of all the tasks can be met. There are,
however, other measures such as penalty functions which is defined accord-
ing to the number of jobs that miss their deadlines, or a weighted cuccess
ratio which is the percentage of tasks that meet their deadlines weighted
by the importance of those tasks.

Relatively little is known about efficient scheduling algorithms for real-
time systems. The early results are limited to cases such as: a single
processor with a precedence relation over a set of sporadic jobs (2], two
processors with a precedence relation over a set of identical sporadic jobs
[10}, and a set of independent periodic tasks on a unique processor (18]
and on multi-processors [5]. This work is applicable only in the simplest of
situations. Again, most scheduling problems of interest to practical real-
time systems are NP-hard, hence heuristics are required. Recently, there
has been some work addressing more complicated yet practical scheduling



constraints. For example. the scheduling of real-time tasks with resource
constraints {35,36], distributed real- time scheduling [28], and the problem
of stochastic execution time and transient overloads[19]. However, a great
deal more needs to be done so that we can handle even more general and
realistic situations. For example, the problem of jointly scheduling system
resources such as CPUs, T/Q devices, communication media and secondary
storage in order to meet the timing requirements of real-time tasks running
on a distributed computer system is a realistic scheduling problem not being
addressed to any great extent. We will say more about this problem in the
next section on real-time operating systems.
The following is a partial list of some other considerations:

¢ static vs dynamic resource allocations,

CPU scheduling vs data I/O management,

o centralized vs distributed systems,

homogeneous vs heterogeneous systems, and

e on-line vs off-line scheduling.

We also need to consider various task characteristics such as:

e hard vs soft deadlines,
¢ preemptable vs non-preemptable tasks,
e sporadic vs periodic tasks, and

¢ independent vs precedence-constrained/communicating tasks.

Although the study of scheduling theory is a challenging and important
scientific research area in its own right, we hasten to point out that such
studv can have significant impact on the design and implementation of
practical real-time algorithms. Theoretical results can provide insight for
the solution of practical problems, or provide performance estimates. On
the other hand, many theoretical results rely on too many assumptions
which do not hold in reality. Extensions of the theoretical results to more
sophisticated situations would be invaluable.
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Real-Time Operating Systems

Real-time operating systems play a key role in most real-time systems.
Typically, one requires an operating system to manage the system resources
well, so that a user can focus on the application specific problems rather
than the underlying system issues. However, in real-time systems [24,29]
the operating system and the application are more tightly intertwined than
in timesharing systems. This presents the same dilemma mentioned above;
how do we provide high level abstractions for real-time programmers, yet
meet timing considerations which are fundamentally dependent on the im-
plementation and environment. In addition, almost all resource manage-
ment techniques used in existing operating systems are not designed to
guarantee that a programs’ critical timing constraints can be met. Some
important operating system research issues include:

* Time-driven resource management. Traditionally, when many tasks
are waiting for access to a shared resource, the allocation policy is
to provide access in FIFO order. However, this policy totally ignores
task’s timing constraints. Time-driven allocation policies must be
developed that can meet the real-time scheduling requirements{32].
Such management policies should be applied not only for the pro-
cessor, but also for memory, I/O and communications resources. In
fact, the entire operating system paradigm of treating tasks and their
resource requests as random is suspect. New paradigms are needed

[29).

¢ Problem-specific OS facilities. A real-time operating system’s func-
tions should be able to adapt to a variety of user and system needs.
For instance, a real-time operating system should provide a sepa-
ration hetween scheduling “policy” and “mechanism”. Thus, a user
can choose or the system can select the time-driven resource man-
agement algorithm most suitable for a particular application or situ-
ation. In distributed applications, a transaction mechanism seems to
have many advantages. Consequently, the real-time operating system
should provide support for transactions with real-time constraints[30).



Research is needed to identify the set of efficient OS primitives re-
quired to support the integration of locking protocols, commit pro-
tocols, and recovery protocols - all specifically addressing real-time
constraints. In particular, recovery by “undoing” operations may not
be applicable in many circumstances, rather some form of forward
error recovery might be necessary.

e Integrated system-wide scheduling support. Real-time scheduling
principles must be applied to system resources, application tasks, and
operating system’s overall design. In particular, a focussed effort is
necessary to integrate real-time communication with real-time cpu
scheduling, and with real-time database support for a large, complex
real-time computer system. For a sequence of actions to meet a dead-
line, precedence constraints must be satisfied and resources must be
available in time for each action of the sequence. Inopportune delays
at any stage of the process can ¢ause missed deadlines.

Real-Time Programming Languages and Design Methodology

As the complexity of real-time systems increases, high demand will be
placed upon the programming abstractions provided by languages. Cur-
rently available abstractions and languages have to evolve with the future
advances in the specification techniques, logic and theory underlying real-
time systems. Unfortunately, this goal has not been fulfilled in the past.
For example, Ada is designed for embedded hard real-time applications
and is intended to support static priority scheduling of tasks. However,
the definition of Ada tasking allows a high priority task to wait for a low
priority task for an unpredicatable duration. Consequently, when processes
are programmed in the form of Ada tasks, the resulting timing behavior is
likely to be unpredictable. The building of the next generation of real-time
systems will require a programming methodology that gives due consid-
erations to the needs of meeting real -time requirements. The important



research issues include:

Support for the management of time. First, language constructs
should support the expression of timing constraints. For example,
Ada tasking should have supported the raising of an exception when
a task’s deadline is missed. Second, the programming environment
should provide the programmer with the primitives to control and to
keep track of the resource utilizations of software modules. This in-
cludes being able to develop programs with predictable performance
in terms of absolute time. Finally, language constructs should support
the use of sound scheduling algorithms.

Schedulability check. Given a set of well understood scheduling al-
gorithms, schedulability analysis allows us to determine if the timing
requirements can be met by measuring the resource utilization of the
given set of tasks. With proper support for the management of time,
it may be possible to perform schedulability checks at compile time.
This idea is similar to the type checking concept.

Reusable real-time software modules. The investigation of reusable
software modules is an important subject, because it reduces the soft-
ware development cost and enhances the quality of resulting soft-
ware. Reusable real-time software modules have the added difficulty
of meeting different timing requirements for different applications.

Support for distributed programs and fault tolerance. The problem
of predicting the timing behavior of real-time programs is further
exacerbated in the context of distributed systems. Special fault toler-
ance features might be added to the semantics of the language, e.g.,
various recovery mechanisms subject to timing considerations.

Distributed Real-Time Databases

In a real-time database system, often a significant portion of data is
highly perishable in the sense that it has value to the mission only if
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nsed quickly. To satisfy the timing requirements, there are two key is-
sues. First, the degree of concurrency in transaction processing must be
increased, and second, the integration of concurrency control protocols and
real-time scheduling algorithms must occur. We first review the concur-
rency control issue. The classical theory of concurrency control is known
as the serializability theory which accepts concurrent executions (sched-
ules) that are equivalent to some serial schedule. There are three attractive
properties of serializable schedules, namely, data consistency, transaction
correctness and modularity of concurrency control protocols. Under the
assumption that transactions are individually consistent and correct, a se-
rializable concurrent execution of transactions leads to correct results and
leaves the database consistent. In addition, serializable schedules can be
enforced by modular concurrency control protocols, i.e., protocols can be
used to schedule a transaction without reference to the semantics of other
transactions. For example, the two phase lock protocol [7] is a modular con-
currency control protocol. The modularity of concurrency control protocols
is important for large scale transaction facilities where transactions are fre-
quently modified. Consistency, correctness and modularity are attractive
properties which account for the popularity of serializable concurrency con-
trol in commercial database systems.

The characteristics of a distributed real-time database, such as a track-
ing database, are distinct from commercial database systems. In a real-time
database, transactions often have to perform statistical operations, e.g., cor-
relation, over a large amount of data that is continuously updated and must
satisfy stringent timing requirements. As observed by Bernstein, Hadzilacos
and Goodman [1] serializability is not a good criterion for the concurrency
control of such databases because of the limitation of concurrency allowed
by serializable concurrent executions. There have been several proposed
approaches which are designed to obtain a high degree of concurrency by
exploring application specific semantic information [9,20,23]. In addition, a
modular decomposition approach for non-serializable conenrrency control
and failure recovery was proposed |25], which assumes that while global se-
rialization is too strong a condition, some form of distributed but localized
scrializability is needed. This is a model of the fact that within a cluster

of tracking stations, consistency of data should be maintained determinis-
tically.
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We hasten to point out that while there is progress in both concurrency
control of transactions and hard real-time process scheduling, very little
is known about the integration between concurrency control protocols and
hard real-time process scheduling algorithms. In concurrency control, we
do not typically address the subject of meeting hard deadlines. The ob-
Jective is to provide a high degree of concurrency and thus faster average
response time. On the other hand, in the schedulability analysis of real-
time process scheduling, e.g., processes for signal processing and feedback
control, it is customary to assume that tasks are independent, or the amount
of time spent in synchronizing their access to shared data is negligible com-
pared with execution time and deadlines. The objective here is to maximize
the resource, e.g., CPU utilization subject to meeting timing constraints.
The fundamental challenge of real-time databases seems to be the creation
of a unified theory which provides us with a real-time concurrency control
protocol that maximizes both concurrency and resource utilization sub ject
to three constraints at the same time: data consistency, transaction cor-
rectness and transaction deadlines. Conceptually, we can view concurrency
control protocols as a means to generate all the legal schedules. Given the
universe of legal schedules, a real-time scheduling protocol is a means to
select those schedules that maximize processor utilization subject to the
constraints of deadlines. Needless to say, much work is needed in this area.

Artificial Intelligence

The current emphasis in real-time Al research concerns reasoning about
time constrained processes and using heuristic knowledge to control or
schedule these processes. A key consideration in robust problem solving is
to provide the best available solution within a dynamically determined time
constraint. Many of the issues currently being addressed in real-time sys-
tems research are applicable to such a system but there are additional con-
siderations. For example, the dynamic nature of symbolic systems requires
support for automated memory management. Current garbage collection
techniques make it difficult, if not impossible, to guarantee a maximum
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system latency. Other features of symbolic systems that exacerbate the
predictability problem include the ability to create and execute a function
at runtime, and the ability to execute a runtime selected function passed as
an argument. In addition, opportunistic control strategies provide the abil-
ity to dynamically direct program execution in response to real-time events.
This contrasts sharply with the current real-time system’s assumption of
a statically determined “decision tree” control sequence. The implication
of this is that the sequences of processing cannot be pre-determined. This
is by no means a comprehensive list of the issues involved in real-time
symbolic systems. We believe that additional research issues will arise as
real-time Al applications evolve and attempts are made to solve problems
in severely time constrained domains.

Fault Tolerance

A real-time computer system and its environment form a synergistic
pair. For example, aircraft are not able to fly without digital control com-
puters. In such systems it is meaningless to consider onboard control com-
puters without considering the aircraft itself. The tight interaction between
the environment and a real-time computer arises from the time and reliabil-
ity constraints. Unless the computer can provide “acceptable” services to
its environment, the computer’s role will be lost and, thus, viewed as failed
or non-existent. Failure can occur because of massive loss of components
(static failure), or because of not responding fast enough to environmental
stimuli (dynamic failure) [26]. This interplay must be carefully character-
ized for various real-time applications, in which, even the determination of
deadlines is by itself a relatively unexplored problem [27]. Based on this
characterization of a real-time problem, a vast number of design and anal-
ysis problems for real-time computers remain to be solved, e.g., optimal
error handling, redundancy management, and tuning of architectures.

Important research issues in making real-time systems fault-tolerant and
reliable include:

o The formal specification of the reliability requirement and the impact
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of timing constraints on such a requirement is a dificult problem. For
example, NASA has set the probability of failure of each flight control
computer to be less than 10~° for a 10-hour operation period (13,33).
This requirement of ultra-reliability makes a clear distinction between
flight control computers and others. The need and difficulty of de-

veloping and analyzing specifications make an innovative research on
this subject imperative.

¢ Error handling is usually composed of an ordered sequence of steps:
error detection, fault location, system reconfiguration and recovery.
All these steps must be designed and analyzed in the context of com-
bined performance (including timing constraints) and reliability. In-
terplay between these steps must be carefully studied. Hardware and
OS support, together with their effects on performance and reliability
are important research subjects.

¢ The proper tradeoff between use of hardware and software for fault-
tolerance must be determined. The hardware approach, e.g., FTMP
[13], is fast but requires an excessive amount of hardware to imple-
ment triple (or quadruple) modular redundancy needed for the reli-
ability of real-time applications. The software approach (e.g., SIFT
[33]), on the other hand, is flexible, inexpensive, but slow. This trade-
off must be optimized such that the system can be made cost-effective,
and that timing constraints will be met.

¢ The effects of real-time workloads on fault-tolerance has not been ad-
equately addressed. It is well-known that the reliability of a computer
system depends strongly on the workload it is handling (for example,
see [34]). It is essential to characterize the effects of “representative”
real-time workloads on fault-tolerance.

Real-Time System Architectures

Many real-time systems can be viewed as a three-stage pipe: data ac-
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quisition, data processing. and output to actuators and/or displays (16).
A reéal-time systems architecture must be designed to support these three
components with high fidelity. For the first and last components, the archi-
tecture must provide extensive I1/O capabilities, while providing fast and
reliable operations for the second component.

Conventional real-time architectures are based on dedicated hardware
and software: the architecture usually has to change with the change in
applications. Such architectures are neither cost-effective nor utilized well.
Due to advances in VLSI technology, it is becoming possible to develop
a new distributed architecture that is suitable for broader classes of real-
time applications. Important issues in this new architecture include inter-
connection topology, interprocess communications, and support of OS and
fault-tolerance functions.

The topology used to interconnect the nodes in a distributed real-time
system must possess the following four features.

(1) Homogeneity: Due to homogeneity, tasks can be allocated to
any node based solely on deadlines and availability of resources. This is
particularly useful when tasks have to be reallocated to different nodes

because the nodes to which they were originally allocated failed before
their completion.

(2) Scalability: This allows the computational power of the network
to be changed at any time without redesigning any of the nodes and causing
any problem of fan-in and fan-out.

(3) Survivability: Given a pair of nodes, the topology must have
several shortest or optimal paths between the nodes. This enables easy

routing of messages in the system. It also increases the survivability of the
network in case of node/link failures.

(4) Experimental Flexibility: By disabling some of the links in the
chosen topology, varions architectures shonld he easily emulated. As a
result, all algorithms that efficiently map onto these architectures can easily
be investigated on the selected topology.

The communication delay between tasks residing at different nodes is a
major problem in real-time systems. It is particularly important to deliver
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messages to meet time constraints in executing real-time tasks. The concept
of virtual cut-through was proposed |15] to solve this problem: messages will
be delivered to destinations without being buffered at intermediate nodes
unless the links and/or nodes in their routes are blocked or faulty. Advances
in VLSI technology have made it possible to implement the virtual cut-
through [4,6]. This VLSI solution appears to be very promising since only
10-15% of messages get buffered in the worst case, i.e., heaviest network
traffic.

Any architectural design should ideally adopt a synergistic approach
where the theory, the operating system, and the hardware are all developed
with the single goal of achieving the real-time constraints in a cost-effective
and integrated fashion.

We conclude this section with some of the open research topics in real-
time architecture.

¢ Interconnection Topology for Processors and I/O. Due to the need
of extensive /O and high speed data processing in real-time applica-
tions, it is important to develop an integrated interconnection topol-
ogy for both processors and 1/0. Although the processing topology
has been studied extensively, little attention has been paid to the
distribution of I/0O data.

¢ Fast and Reliable Communications. The VLSI implementation of
the virtual cut-through may provide fast communications. However,
there is still uncertainty on how long it will take to deliver a partic-
ular message. It is difficult to guarantee that all hard deadlines will
be met under this uncertainty. Moreover, any solution must consider
delays that might occur due to failures. Further research is neces-
sary to implement the virtual cut-through by considering both the
predictability and reliability in delivering messages.

o Architectural Suppart for Frror Handling, Tt is essential to have hard-
ware support for speedy error detection, reconfiguration and recovery.
This includes self-checking circuitry, maintenance processors, system
monitors, voters, etc. Where to place these and when and how to op-
erate them will be important to system performance and reliability.
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o Architectural Support for Scheduling Algorithms. In order to support
real-time scheduling algorithms, architectures may need to support,
among other features, fast preemptability, sufficient priority resolu-
tion, efficient support for data-structures like priority queueing, and
sophisticated /O and communication media scheduling.

e Architectural Support for Real-Time Operating Systems. Operating
systems for real-time systems would stand to benefit from facilities
provided by underlying hardware in terms of support for real-time
protocols, multiple contexts, real-time memory management includ-

ing caching and garbage collection, interrupt handling, clock synchro-
nization, etc.

e Architectural Support for Language Features: The use of special-
purpose architectures designed to support real-time programming lan-
guages more explicitly and efficiently can provide immense benefits
in the context of real-time systems. For instance, certain architecture
features could aid in predicting program execution times, or hardware
support for garbage collection can eliminate a bottleneck encountered
in today’s traditional architectures, or support for concurrency con-
trol can improve the performance of real-time languages.

Real-Time Communication

The communication media for next generation distributed real-time sys-
tems will be required to form the backbone upon which predictable, stable,
extensible system solutions will be built. To be successful the real-time
communication subsystem must be able to predictably satisfy individual
message level timing requirements. The timing requirements are driven
not only by applications’ inter-process communication, but also by time-
constrained operating system functions invoked on behalf of application
processes. Networking solutions for this context are distinguished from
the standard nonreal-time solutions with the introduction of time. In a
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nonreal-time setting, it is sufficient to verify the logical correctness of a
communications solution; however in a real-time setting it is also necessary
to verify timing correctness. Software engineering practices have helped
in determining the logical correctness of systems solutions, but have not
addressed the timing correctness. Timing correctness includes insuring the
schedulability of synchronous and sporadic messages as well as insuring that
the response time requirements of asynchronous messages are met. Insuring
the timing correctness for static real-time communications systems using
current technology is difficult. Insuring the timing correctness in the next
generations dynamic environment will be a substantial research challenge.

Even though the communications channel is yet another resource, like
the processor, there are at least three issues that differentiate the channel
scheduling problem from the processor scheduling problem.

o Unlike the processor, which has a single point of access, access to
the channel is attempted by a distributed set of nodes. Hence, a
distributed protocol is needed.

e While preemptive algorithms are appropriate for scheduling tasks on
a processor, preemption during message transmission will mean that
the entire message needs to be transmitted.

¢ In addition to message deadlines arising from the semantics of an
application, deadlines can also arise from buffer limitations. For ex-
ample, when only one buffer is available, the message in the buffer
must be transmitted before the next message arrives.

Like the uniprocessor environment where the Time Domain Multiplex-
ing (TDM) techniques (cyclical executives) are being used to insure timing
correctness, the current state of the art and predominant practice for insur-
ing network timing correctness is to use TDM techniques. This manifests
itself as time-lines on busses and cyclical schedulers on rings. TDM ap-
proaches provide a strong systems solution for tasks/message sets with a
single period or harmonically related periods like those found in phone sys-
tems. Experience with cyclical executives have found that as the task set
periods grow in number and become relatively prime, the TDM schedule
tends to be ad hoc in nature, painful to generate, very inflexible and difficult
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to modify {11;. Unfortunately, current local area network trends are march-
ing down the same path with the TDM based approaches embodied by the
High Speed Ring Bus (HSRB) (12] and the Fiber Distributed Data Interface
(FDDI) [8] token passing rings. The FDDI is a commercially targeted high
performance fiber optic token passing ring which should provide a strong
solution for the general voice and video applications which have a small
number of unique message periods. The HSRB is a proposed military stan-
dard for the next generation military systems which forms a subset of the
real-time systems that this paper addresses. Its applications environment
will be far more varied and dynamic often with large numbers of periods
that could be relatively prime. To avoid repeating the problems of cyclical
executives in the real-time communications environment, alternative ap-
proaches must be developed. To further exacerbate the problem, the next
generation distributed real-time systems will become increasingly recon-
figurable, driven by reliability and availability requirements. This results
in a virtual explosion in the number of unique time-lines to be designed,
integrated and tested if TDM based solutions are used. For these highly
dynamic, adaptive systems, TDM techniques will be inadequate.

Research is needed not only to address the future challenges of the real-
time distributed communications environment but also to develop tech-
niques for applying current scheduling technology in the distributed com-
munications domain. IBM FSD (3] and researchers at Carnegie-Mellon
University [17] initially introduced frame level contention resolution with
message based (as opposed to station based) priority assignment to the dis-
tributed communications domain in IBM’s Distributed Systems Data Bus
(DSDB). Researchers at Carnegie-Mellon University (31} are currently ex-
tending this work by developing techniques for applying recent advances in
scheduling theory to the emerging Local Area Network (LAN) standards.
New work in window protocols for time constrained message transmission
has also appeared [37]. ‘

Additional research is needed to develop technologies that support the
unique challenges of real-time communications which include:

¢ Dynamic routing solutions with guaranteed timing correctness,

¢ Network buffer management that supports scheduling solutions,
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F\' l . . - .
o Faultl tolerant and time constrained communications,

o Network scheduling that can be combined with processor scheduling
to provide system level scheduling solutions.

Meeting these challenges will require substantial research effort with as-
sociated breakthroughs in network control theory. With the network form-
ing the backbone of many next generation distributed real-time systems,

the strength of these systems will be no stronger than the communications
solution that supports it.

3 Common Misconceptions

Real-time system design has not attracted the attention from academic
computer scientists that it deserves. This lack of adequate attention has
been attributed to some common misconceptions about real-time systems.
Let us now discuss the major misconceptions.

There is no science in real-time system design

It is certainly true that the state-of-the-art in real-time system design
is mostly ad hoc. That does not mean, however, that a scientific approach
is not possible. Most good science grew out of attempts to solve practical
problems, and there is plenty of evidence that engineers of real-time systems
need help, e.g., the first flight of the Space Shuttle was delayed, at consid-
erable cost, because of a subtle timing bug which arose from a transient
CPU overload during system initialization. Can we then develop a scientific
hasis for verifving a design to he free of such subtle timing hngs? Indeed,
the purpose of {his article is to introduce some of the technical prohlems
involved in designing reliable real-time systems and point out some of the
scientific basis that is emerging. We are starting to understand what the
important problems are in real-time scheduling of resources. The subtleties
of including a time metric in system specification methods and semantic
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theories for real-time programming languages are beginning to be investi-
gated. A good analogy can be drawn between current research in real-time
system design and the status of VLSI design research five years ago. There
are some striking similarities and the potential scientific rewards are equally
great.

Advances in supercomputer hardware will take care of real-
time requirements

Advance in supercomputer design will likely exploit parallel processors
to improve system throughput, but this does not mean that timing con-
straints will automatically be met. Unless the architecture of the computing
system is carefully tailored to match that of the application, the processors
and their communication subsystems may not be able to handle all of the
task load and time-critical traffic. In fact, the real-time task and commu-
nication scheduling problems are likely to be harder as more hardware is
used.

Realistically, the history of computing shows that the demand for more
computing power has always outstripped the supply. If the past is any guide
to the future, the availability of more computing power will only open up
real-time applications requiring greater functionality thus exacerbating the
timing problems. There is no substitute for intelligent deployment of finite
resources. There are also other important issues in real-time systems design
that cannot be resolved by supercomputer hardware alone, as discussed in
the following points.

Real-time camputing is equivalent to fast compnting

The objective of fast computing is to minimize the average response
time of a given set of tasks. The objective of real-lime computing is to
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meet the individual timing requirement of each of the tasks. Rather than
being fast (which is a relative term anyway), the most important property
that a real-time system should have is predictability, i.e., its functional and
timing behavior should be as deterministic as is necessary to satisfy sys-
tem specifications. Fast computing is helpful in meeting stringent timing
specifications, but fast computing alone does not guarantee predictability.
There are other factors other than fast hardware or algorithms that deter-
mine predictability. Sometimes, the implementation language may not be
expressive enough to prescribe certain timing behavior. For example, the
delay statement of Ada only puts a lower bound on when a task is next
scheduled; there is no language support to guarantee that a task cannot be
delayed longer than a desired upper bound. The scheduling of (or the lack
of programmer control over) nondeterministic constructs such as the select
statement in Ada is especially troublesome since timing properties that in-
volve upper bounds cannot be guaranteed by the usual fairness semantics
defining such constructs. Perhaps the best response to those who claim
that real-time computing is equivalent to fast computing is to raise the
following question: Given a set of demanding real-time requirements and
an implementation using the fastest hardware and software possible, how
can one show that the specified timing behavior is indeed being achieved?
Testing is not the answer! Indeed, for all the laborious testing and simula-
tion effort on the Space Shuttle, the timing bug that delayed its first flight
was discovered the hard way; there was a only 1 in 67 probability that a
transient overload during initialization could put the redundant processors
out of sync, and it did. Predictability, not speed is the foremost goal in
real-time system design.

Real-time programming is assembly coding, priority interrupt
programming, and writing device drivers

To meet tight timing constraints, current practice in real-time program-
ming relies heavily on machine-level optimization techniques. These tech-
niques are labor-intensive and sometimes introduce additional timing as-
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sumptions (unwisely, but as a last resort) on which the correctness of an
implementation depends. The reliance on clever hand-coding and difficult-
to-trace timing assumptions is a major source of bugs in real-time pro-
gramming, especially in modifying large real-time programs. A primary
ohjective in real-time systems research is in fact to automate, by exploit-
ing optimizing transforms and scheduling theory, the synthesis of highly
efficient code and customized resource schedulers from timing constraint
specifications. On the other hand, while assembly language programming,
interrupt programming and writing device drivers are aspects of real-time

computing, they do not constitute open scientific problems - except in their
automation.

Real-time systems research is performance engineering

An important component of real-time systems research is to investigate
effective resource allocation strategies so as to satisfy stringent timing be-
havior requirements. The synthesis aspects of real-time system research
can indeed be regarded as performance engineering (but see the next point
below). The proper design of a real-time system, however, requires so-
lutions to many other interesting problems, e.g., specification and verifi-
cation of timing behavior, and programming language semantics dealing
with time. There are also theoretical problems that involve the use of tim-
ing constraints, sometimes implicitly, to ensure correctness. For example,
the well-known Byzantine Generals problem is unsolvable for totally asyn-
chronous systems, but is solvable if the generals can vote in rounds. That a
good general must deliver a number of messages within a round according
to the voting protocol is a form of a timing constraint! Indeed, the correct
functioning of many systems often depends on the implementation heing
able to perform an operation that requires the satisfaction of certain timing
constraints, albeit implicitly specified (e.g., in the form of testing an atomic
predicate such as determining whether a communication channel is empty).
An important problem in real-time systems research is to investigate the
role time plays as a synchronization mechanism, e.g., what is the logical
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power of different forms of timing constraints in solving various coordina-
tion problems? If a system must depend on the satisfaction of some timing
constraints for its correctness, is there a least restrictive set of timing con-
straints that is sufficient for the purpose? Does the imposition of various
timing constraints facilitate more eflicient solutions to distributed coordina-

tion problems? Such questions certainly go beyond traditional performance
engineering.

The problems in real-time system design have all been solved
in other areas of computer science or operations research

While real-time system researchers should certainly try to exploit the
problem solution techniques developed in more established research areas,
there are unique problems in real-time systems that have not been solved in
any other area. For example, performance engineering in computer science
has been mostly concerned with analyzing the average values of perfor-
mance parameters, whereas an important consideration in real-time system
design is whether some stringent deadlines can be met or not. Queueing
models traditionally make use of convenient stochastic assumptions that are
justified by large populations and stable operating conditions. Analytical
results based on these assumptions may be quite useless for some real-time
applications. For example, the hot-spot contention phenomenon (a highly
non-linear performance degradation due to slight deviations from uniform
traffic in multi-stage interconnection networks which has been reported by
Pfister et al) is likely to be catastrophic for time-critical communication
packets. Likewise, the combinatorial scheduling problems in operations re-
search deal mostly with one-shot tasks, i.e., each task needs to be scheduled
only once. whereas in real-time svstems. the same task may recur infinitely
olten, either periodically or at irregular intervals, and may have to synchro-
nize or communicate with many other tasks. The general synthesis problem
of arbitrary timing behavior will certainly require new techniques that are
not to be found in existing literature.
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It is not meaniugful to talk about guaranteeing real-time per-
formance because we cannot guarantee that the hardware will
not fail and the software is bug-free or that the actual operating
conditions will not violate the specified design limits

It is a truism that one can only hope to minimize the probability of
failure in the systems one builds (assuming that one believes in quantum
mechanics). The relevant question is of course how to build systems in such
a way that we can have as much confidence as possible that they will meet
specifications at acceptable costs. In real-time system design, one should
attempt to allocate resources judiciously to make certain that any critical
timing constraint can be met with the available resources, assuming that
the hardware/software functions correctly and the external environment
does not stress the system beyond what it is designed to handle. The fact
that the hardware/software may not function correctly or that the operating
conditions imposed by the external world may exceed the design limits with
a non-zero probability does not give the designer license to INCREASE the
odds of failure by not trying to allocate resources carefully so as to meet the
critical timing constraints. We certainly cannot guarantee anything outside
our control, but for those that we can, we should.

Real-time systems function in a static environment

Depending on the operating mode, a real-time system ay have to
satisfy different sets of timing constraints at different times. Thus, an im-
portant topic in real-time systems research is the design of hierarchical
schedulers to make resource allocation decisions for different time granular-
ities. A particularly vexing industrial problem is how to reconfigure systems
to accomodate changing requirements so as to create minimal disruption to
ongoing operation. [t is not uncommon for some real-time system hardware
to be in the field for 15 or more years, and hence any design methodology
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for such systems must not assume a static environment.

4 Research Agenda

The primary audience for this paper is the active researcher. We hope that
the researchers reading this paper have been enticed by the multitude of
important problems to be solved. However, we now shift our emphasis to
address government and industrial managers who have responsibility for
long term research directions. In this section we sketch a research agenda
for solving these problems.

All the areas mentioned in this paper are important and increased fund-
ing is needed in each of them. However, given limited funds we suggest

focussing on two main themes which have the greatest likelihood of having
the biggest impact. The themes are:

e the formalization of the time dimension including the specification,
verification, and analysis of time constraints, and

o time driven resource allocation which encompasses many of the areas
addressed in this paper to various extents.

Fundamental scientific results in these two areas will accelerate progress
in the other areas such as architecture, data bases, etc. However, the
increased funding and research must be directed to the problems addressed
in this report, and not wasted on the misconceived notions of real-time
systems. Therefore, we see a more focussed agenda for the first four to five
years where the primary activities are in the two areas identified above,
and secondary activities are supported in all the other areas mentioned in
this report. After this first phase, there needs to be a gradual broadening
of support to encompass all the research topics.

A necessary ingredient for achieving the needed results is to expand the
research community. A concerted effort must he made to raise people’s
avareness ol the need lor funding and vescarch in this area. The mimuber
of University groups doing real-time research must increase dramatically
(from the current 5-10 range to the 40-50 range). In addition, a Center
for real-time systems would be useful and could be responsible for running
workshops, increasing community awareness of the problems and needs,
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providing a catalyst for merging results from different projects, providing
common workloads and other benchmarks, and providing application inputs
and real-world constraints to fundamental research. Several other smaller
centers could be more technically oriented and be directed to subsets of
the overall problem. Initially, one major center, two smaller centers each
focussed on one of the two themes outlined above, and the 40-50 University
projects would provide a good start to the needed work. Then in 4-5 years,
the program needs to further expand as the research agenda broadens to
include all of the other topics.

5 Conclusions

In summary, we believe that many real-time systems of tomorrow will be
large and complex, will function in distributed and dynamic environments,
will include expert system components, will involve complex timing con-
straints encompassing different granules of time, and will result in economic,
human, and ecological catastrophies if these timing constraints are not met.
Meeting the challenges imposed by these characteristics very much depends

on a focussed and coordinated effort in all aspects of system development,
such as:

e Specification and verification techniques that can handle the needs of
real-time systems with a large number of interacting components,

e Design methodologies that can be used to synthesize systems with
the specified timing properties where these timing properties are con-
sidered from the beginning of the design process,

e Programming languages with explicit constructs to express the time
realted behavior of modules and with unambiguous semantics,

e Scheduling alignrithmes that can, in an infegrated and dynamic fash-
ion, handle coiplex task structures with resource and precedence
constraints, handle resources (such as the communication subnet and
I/O devices), and handle timing constraints of varying granularity,
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e Operating system functions designed to deal with highly integrated

and cooperative time-constrained resource management in a fast and
predictable manner,

e Communication architectures and protocols for efficiently dealing with
messages that require timely delivery, and

o Architecture support for fault tolerance, for efficient operating system
functionsing, and for time constrained communication.

This paper shows that real-time systems have brought about challenges
in a wide range of computer science disciplines that are not being met. Each
of these challenges must be overcome before a science of large scale real-
time systems can become a reality. The task is very formidable and success
will require a concerted effort on the part of many different participants in
the computer science community and it will require expanded efforts and
the enticement of new researchers into this field, especially in academia
where relatively little such work is going on. We must coordinate the in-
teractions among the research efforts in universities and the development
efforts in industries so that academic researchers will be familiar with the
key problems faced by system developers, and system developers will be
aware of the relevant new theories and technologies. The solution to de-
velopment of a theory of large scale real-time systems does not lie in the
current methodologies of operations research, database theory, scheduling
theory or operating systems theory. Rather, it lies in well-coordinated and
expanded efforts among universities, industry and government laboratories
directed toward the distinct problems that this topic brings to the fore.
This latter point is similar to one of the major conclusions of [38] where
extensive cooperation among all these agencies is recommended to sovle
problems in High Performance Computing, Software Technology and Al-
gorithms, Networking, and Basic Research and Human Resources. The
conclnsions of this paper are in concert with the general conclusions of
that report, but this paper is much more detailed specifically expounding
upon the basic research needs of one important research topic: real-time
computing.
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