
Programación de Sistemas Embebidos 2020
Makefiles

Índice general

1 Introduction . 1
2 Installing GNU Make . 2
3 A sample project . 2
4 Writing a Makefile from scratch 3
5 Makefile processing, in general 4
6 Processing our Makefile . 5
7 More bytes on Makefiles . 7
8 Dealing with assignments . 7
9 Using patterns and special variables 8
10 Action modifiers . 9
11 Use PHONY to avoid file-target name conflicts 9
12 Simulating make without actual execution 9
13 Using the shell command output in a variable 9
14 Nested Makefiles . 10
15 Make in non-compilation contexts 11
16 Makefile del driver serial . 13
17 Referencias . 14

17.1 Licencia y notas de la traducción 15

Chapter 3

Makefiles

Sarath Lakshman

Have you ever peeked into the source code of any of the applications you run
every day? Ever used make install to install some application? You will see make in
most projects. It enables developers to easily compile large and complex programs
with many components. It’s also used for writing maintenance scripts based on
timestamps. This article shows you how to have fun with make.
Keywords: sistema embebido, ciclo de compilación, GNU GCC, compiladores cru-
zados (cross-compilers), make, makefile

I consider that the golden rule requires that if I like a program I must share it
with other people who like it. Software sellers want to divide the users and con-
quer them, making each user agree not to share with others. I refuse to break
solidarity with other users in this way. I cannot in good conscience sign a non-
disclosure agreement or a software license agreement. So that I can continue
to use computers without dishonor, I have decided to put together a sufficient
body of free software so that I will be able to get along without any software
that is not free.
—Richard Stallman 27-sep-1983, Founder of the GNU Project.

1 Introduction

Large projects can contain thousands of lines of code, distributed in multiple
source files, written by many developers and arranged in several subdirectories.
A project may contain several component divisions.These components may have
complex inter-dependencies — for example, in order to compile component X,
you have to first compile Y; in order to compile Y, you have to first compile
Z; and so on. For a large project, when a few changes are made to the source,
manually recompiling the entire project each time is tedious, error-prone and
time-consuming.

Make is a solution to these problems. It can be used to specify dependencies
between components, so that it will compile components in the order required to
satisfy dependencies. An important feature is that when a project is recompiled
after a few changes, it will recompile only the files which are changed, and any
components that are dependent on it. This saves a lot of time. Make is, therefore,
an essential tool for a large software project.

Sarath Lakshman

Each project needs a Makefile — a script that describes the project structure,
namely, the source code files, the dependencies between them, compiler argu-
ments, and how to produce the target output (normally, one or more executables).
Whenever the make command is executed, the Makefile in the current working
directory is interpreted, and the instructions executed to produce the target out-
puts. The Makefile contains a collection of rules, macros, variable assignments,
etc. (‘Makefile’ or ‘makefile’ are both acceptable.)

2 Installing GNU Make

Most distributions ship make as part of the default installation. You have to ins-
tall it, either using the package-management system, or by manually compiling
from source. Using the package-management is the recommended way, but if
you need to build to compile and build from source, download the tarball, ex-
tract it, and go through the README file. If you’re running Debian (or deriva-
tives like Ubuntu, Linux Mint, etc) you can install make as well as some other
common packages required for building from source, by running: sudo apt-get
install build-essential.

3 A sample project

To acquaint ourselves with the basics of make, let’s use a simple C “Hello world”
project, and a Makefile that handles building of the target binary. We have three
files (below): module.h, the header file that contains the declarations; module.c,
which contains the definition of the function defined in module.h; and themain fi-
le, main.c, inwhichwe call the sample_func() defined inmodule.c. Since module.h includes
the required header files like stdio.h, we don’t need to include stdio.h in every
module; instead, we just include module.h. Here, module.c andmain.c can be com-
piled as separate object modules, and can be linked by GCC to obtain the target
binary.

module.h:
#include <stdio.h>
void sample_func();
module.c:
#include ”module.h”
void sample_func()
{

2

Makefiles

 printf(”Hello world!”);
}
main.c:
#include ”module.h”
void sample_func();
int main()
{
 sample_func();
 return 0;
}

The following are the manual steps to compile the project and produce the
target binary:

slynux@freedom:~$ gcc -I . -c main.c # Obtain main.o
slynux@freedom:~$ gcc -I . -c module.c # Obtain module.o
slynux@freedom:~$ gcc main.o module.o -o target_bin #Obtain target binary

(-I is used to include the current directory (.) as a header file location.)

4 Writing a Makefile from scratch

By convention, all variable names used in a Makefile are in upper-case. A com-
mon variable assignment in a Makefile is CC = gcc, which can then be used later
on as $CC or $(CC). Makefiles use # as the comment-start marker, just like in
shell scripts.

The general syntax of a Makefile rule is as follows:

target: dependency1 dependency2 ...
[TAB] action1
[TAB] action2
 ...

Let’s take a look at a simple Makefile for our sample project:

all: main.o module.o
 gcc main.o module.o -o target_bin
main.o: main.c module.h

3

Sarath Lakshman

 gcc -I . -c main.c
module.o: module.c module.h
 gcc -I . -c module.c
clean:
 rm -rf *.o
 rm target_bin

We have four targets in the Makefile:
all is a special target that depends on main.o and module.o, and has the com-

mand (from the “manual” steps earlier) to make GCC link the two object files
into the final executable binary.

main.o is a filename target that depends on main.c and module.h, and has the
command to compile main.c to produce main.o.

module.o is a filename target that depends on module.c and module.h; it calls
GCC to compile the module.c file to produce module.o.

clean is a special target that has no dependencies, but specifies the commands
to clean the compilation outputs from the project directories.

You may be wondering why the order of the make targets and commands in
the Makefile are not the same as that of the manual compilation commands we
ran earlier. The reason is so that the easiest invocation, by just calling the make
command, will result in the most commonly desired output — the final executa-
ble. How does this work? The make command accepts a target parameter (one
of those defined in the Makefile), so the generic command line syntax is make
<target>. However, make also works if you do not specify any target on the com-
mand line, saving you a little typing; in such a case, it defaults to the first target
defined in the Makefile. In our Makefile, that is the target all, which results in
the creation of the desired executable binary target_bin!

5 Makefile processing, in general

When the make command is executed, it looks for a file named makefile or
Makefile in the current directory. It parses the found Makefile, and constructs a
dependency tree. Based on the desired make target specified (or implied) on the
command-line, make checks if the dependency files of that target exist. And (for
filename targets — explained below) if they exist, whether they are newer than
the target itself, by comparing file timestamps.

Before executing the action (commands) corresponding to the desired target,
its dependencies must be met; when they are not met, the targets corresponding

4

Makefiles

to the unmet dependencies are executed before the given make target, to supply
the missing dependencies.

When a target is a filename, make compares the timestamps of the target fi-
le and its dependency files. If the dependency filename is another target in the
Makefile, make then checks the timestamps of that target’s dependencies. It thus
winds up recursively checking all the way down the dependency tree, to the
source code files, to see if any of the files in the dependency tree are newer than
their target filenames. (Of course, if the dependency files don’t exist, then make
knows it must start executing the make targets from the “lowest” point in the
dependency tree, to create them.)

If make finds that files in the dependency tree are newer than their target,
then all the targets in the affected branch of the tree are executed, starting from
the “lowest”, to update the dependency files. When make finally returns from its
recursive checking of the tree, it completes the final comparison for the desired
make target. If the dependency files are newer than the target (which is usually
the case), it runs the command(s) for the desired make target.

This process is how make saves time, by executing only commands that need
to be executed, based on which of the source files (listed as dependencies) have
been updated, and have a newer timestamp than their target.

Now, when a target is not a filename (like all and clean in our Makefile, which
we called “special targets”), make obviously cannot compare timestamps to check
whether the target’s dependencies are newer. Therefore, such a target is always
executed, if specified (or implied) on the command line.

For the execution of each target, make prints the actions while executing them.
Note that each of the actions (shell commands written on a line) are executed in
a separate sub-shell. If an action changes the shell environment, such a change
is restricted to the sub-shell for that action line only. For example, if one action
line contains a command like cd newdir, the current directory will be changed
only for that line/action; for the next line/action, the current directory will be
unchanged.

6 Processing our Makefile

After understanding how make processes Makefiles, let’s run make on our own
Makefile, and see how it is processed to illustrate how it works. In the project
directory, we run the following command:

slynux@freedom:~$ make

5

Sarath Lakshman

gcc -I . -c main.c
gcc -I . -c module.c
gcc main.o module.o -o target_bin

What has happened here? When we ran make without specifying a target
on the command line, it defaulted to the first target in our Makefile — that is,
the target all. This target’s dependencies are module.o and main.o. Since these
files do not exist on our first run of make for this project, make notes that it
must execute the targets main.o and module.o. These targets, in turn, produce
the main.o andmodule.o files by executing the corresponding actions/commands.
Finally,make executes the command for the target all.Thus, we obtain our desired
output, target_bin.

If we immediately run make again, without changing any of the source files,
we will see that only the command for the target all is executed:

slynux@freedom:~$ make
gcc main.o module.o -o target_bin

Though make checked the dependency tree, neither of the dependency targets
(module.o andmain.o) had their own dependency files bearing a later timestamp
than the dependency target filename. Therefore, make rightly did not execute
the commands for the dependency targets. As wementioned earlier, since the tar-
get all is not a filename, make cannot compare file timestamps, and thus executes
the action/command for this target.

Now, we update module.c by adding a statement

printf(”\nfirst update”);

 inside the sample_func() function. We then run make again:

slynux@freedom:~$ make
gcc -I . -c module.c
gcc main.o module.o -o target_bin

Since module.c in the dependency tree has changed (it now has a later times-
tamp than its target, module.o), make runs the action for the module.o target,
which recompiles the changed source file. It then runs the action for the all tar-
get.

We can explicitly invoke the clean target to clean up all the generated .o files
and target_bin:

6

Makefiles

$ make clean
rm -rf *.o
rm target_bin

7 More bytes on Makefiles

Make provides many interesting features that we can use in Makefiles. Let’s look
at the most essential ones.

8 Dealing with assignments

There are different ways of assigning variables in a Makefile. They are (type of
assignment, followed by the operator in parentheses):

8.0.1 Simple assignment (:=)

We can assign values (RHS) to variables (LHS) with this operator, for exam-
ple: CC := gcc. With simple assignment (:=), the value is expanded and stored
to all occurrences in the Makefile when its first definition is found.

For example, when a CC := $GCC $FLAGS simple definition is first encounte-
red, CC is set togcc -W andwherever $CC occurs in actions, it is replacedwith gcc
-W.

8.0.2 Recursive assignment (=)

Recursive assignment (the operator used is =) involves variables and values that
are not evaluated immediately on encountering their definition, but are re-evaluated
every time they are encountered in an action that is being executed. As an exam-
ple, say we have:

GCC = gcc
FLAGS = -W

With the above lines, CC = $GCC FLAGS will be converted to gcc -W only
when an action like $CC file.c is executed somewhere in the Makefile. With re-
cursive assignation, if the GCC variable is changed later (for example, GCC =
c++), then when it is next encountered in an action line that is being updated, it
will be re-evaluated, and the new value will be used; $CCwill now expand to c++
-W.

7

Sarath Lakshman

We will also have an interesting and useful application further in the article,
where this feature is used to deal with varying cases of filename extensions of
image files.

8.0.3 Conditional assignment (?=)

Conditional assignment statements assign the given value to the variable only if
the variable does not yet have a value.

8.0.4 Appending (+=)

The appending operation appends texts to an existing variable. For example:

CC = gcc
CC += -W

CC now holds the value gcc -W. Though variable assignments can occur in
any part of the Makefile, on a new line, most variable declarations are found at
the beginning of the Makefile.

9 Using patterns and special variables

The % character can be used for wildcard pattern-matching, to provide generic
targets. For example: %.o: %.c [TAB] actions When % appears in the dependency
list, it is replaced with the same string that was used to perform substitution in
the target. Inside actions, we can use special variables for matching filenames.
Some of them are:

$@ (full target name of the current target)
$? (returns the dependencies that are newer than the current target)
$* (returns the text that corresponds to % in the target)
$< (name of the first dependency)
$^ (name of all the dependencies with space as the delimiter)

Instead of writing each of the file names in the actions and the target, we can
use shorthand notations based on the above, to write more generic Makefiles.

8

Makefiles

10 Action modifiers

We can change the behaviour of the actions we use by prefixing certain action
modifiers to the actions. Two important action modifiers are:

- (minus) — Prefixing this to any action causes any error that occurs while
executing the action to be ignored. By default, execution of aMakefile stopswhen
any command returns a non-zero (error) value. If an error occurs, a message is
printed, with the status code of the command, and noting that the error has been
ignored. Looking at the Makefile from our sample project: in the clean target,
the rm target_bin command will produce an error if that file does not exist (this
could happen if the project had never been compiled, or if make cleanis run twice
consecutively). To handle this, we can prefix the rm command with a minus, to
ignore errors: -rm target_bin.

@ (at) suppresses the standard print-action-to-standard-output behaviour of
make, for the action/command that is prefixed with @. For example, to echo a
custom message to standard output, we want only the output of the echo com-
mand, and don’t want to print the echo command line itself. @echoMessage will
print “Message” without the echo command line being printed.

11 Use PHONY to avoid file-target name conflicts

Remember the all and clean special targets in ourMakefile?What happens when
the project directory has fileswith the names all or clean?The conflictswill cause
errors. Use the .PHONYdirective to specify which targets are not to be treated as
files — for example: .PHONY: all clean.

12 Simulating make without actual execution

At times, maybe when developing the Makefile, we may want to trace the make
execution (and view the logged messages) without actually running the actions,
which is time consuming. Simply use make -n to do a “dry run”.

13 Using the shell command output in a variable

Sometimes we need to use the output from one command/action in other places
in the Makefile — for example, checking versions/locations of installed libraries,
or other files required for compilation. We can obtain the shell output using the

9

Sarath Lakshman

shell command. For example, to return a list of files in the current directory into
a variable, we would run: LS_OUT = $(shell ls).

14 Nested Makefiles

NestedMakefiles (which areMakefiles in one or more subdirectories that are also
executed by running the make command in the parent directory) can be useful
for building smaller projects as part of a larger project. To do this, we set up
a target whose action changes directory to the subdirectory, and invokes make
again:

subtargets:
 cd subdirectory && $(MAKE)

Instead of running the make command, we used $(MAKE), an environment
variable, to provide flexibility to include arguments. For example, if you were
doing a “dry run” invocation: if we used the make command directly for the
subdirectory, the simulation option (-n) would not be passed, and the commands
in the subdirectory’s Makefile would actually be executed. To enable use of the -
n argument, use the $(MAKE) variable.

Now let’s improve our original Makefile using these advanced features:

CC = gcc # Compiler to use
OPTIONS = -O2 -g -Wall # -g for debug, -O2 for optimise and -Wall additional messages
INCLUDES = -I . # Directory for header file
OBJS = main.o module.o # List of objects to be build
.PHONY: all clean # To declare all, clean are not files

all: ${OBJS}
 @echo ”Building..” # To print ”Building..” message
 ${CC} ${OPTIONS} ${INCLUDES} ${OBJS} -o target_bin

%.o: %.c # % pattern wildcard matching
 ${CC} ${OPTIONS} -c $*.c ${INCLUDES}
list:
 @echo $(shell ls) # To print output of command ’ls’

clean:
 @echo ”Cleaning up..”

10

Makefiles

 -rm -rf *.o # - prefix for ignoring errors and continue execution
 -rm target_bin

Run make on the modified Makefile and test it; also run make with the new
list target. Observe the output.

15 Make in non-compilation contexts

I hope you’re now well informed about using make in a programming context.
However, it’s also useful in non-programming contexts, due to the basic beha-
viour of checking the modification timestamps of target files and dependencies,
and running the specified actions when required. For example, let’s write a Ma-
kefile that will manage an image store for us, doing thumbnailing when required.
Our scenario is as follows:

We have a directory with two subdirectories, images and thumb.
The images subdirectory containsmany large image files; thumb contains thumb-

nails of the images, as .jpg files, 100x100px in image size.
When a new image is added to the images directory, creation of its thumbnail

in the thumbdirectory should be automated. If an image is modified, its thumb-
nail should be updated.

The thumbnailing process should only be done for new or updated images, and
not images that have up-to-date thumbnails.

This problem can be solved easily by creating a Makefile in the top-level direc-
tory, as follows:

FILES = $(shell find images -type f -iname ”*.jpg” | sed ’s/images/thumb/g’)
CONVERT_CMD = convert -resize ”100x100” $< $@
MSG = @echo ”\nUpdating thumbnail” $@

all: ${FILES}
thumb/%.jpg: images/%.jpg
 $(MSG)
 $(CONVERT_CMD)
thumb/%.JPG: images/%.JPG
 $(MSG)
 $(CONVERT_CMD)
clean:
 @echo Cleaning up files..
 rm -rf thumb/*.jpg thumb/*.JPG

11

Sarath Lakshman

In the above Makefile, FILES = $(shell find images -type f -iname ”*.jpg”| sed
’s/images/thumb/g’) is used to generate a list of dependency filenames. JPEG files
could have the extension .jpg or .JPG (that is, differing in case). The -iname para-
meter to find (find images -type f -iname ”*.jpg”) will do a case-insensitive search
on the names of files, andwill return fileswith both lower-case and upper-case ex-
tensions - for example, images/1.jpg,images/2.jpg, images/3.JPG and so on. The
sed command replaces the text ïmagesẅith ẗhumb,̈ to get the dependency file
path.

When make is invoked, the all target is executed first. Since FILES contains a
list of thumbnail files for which to check the timestamp (or if they exist), make
jumps down to the thumb%.jpg wildcard target for each thumbnail image file
name. (If the extension is upper-case, that is,thumb/3.JPG, then make will look
for, and find, the second wildcard target, thumb%.JPG.)

For each thumbnail file in the thumb directory, its dependency is the image
file in the images directory. Hence, if any file (that’s expected to be) in the thumb
directory does not exist, or its timestamp is older than the dependency file in the
images directory, the action (calling$(CONVERT_CMD) to create a thumbnail)
is run.

Using the features we described earlier, CONVERT_CMD is defined before tar-
gets are specified, but it uses recursive assignment. Hence, the input and target
filenames passed to the convert command are substituted from the first depen-
dency ($<) and the target ($@) every time the action is invoked, and thus will
work no matter from which action target (thumb%.JPG or thumb%.jpg) the ac-
tion is invoked.

Naturally, the “Updating thumbnail” message is also defined using recursive
assignment for the same reasons, ensuring that $(MSG) is re-evaluated every ti-
me the actions are executed, and thereby able to cope with variations in the case
of the filename extension.

slynux@freedom:~$ make
Updating thumbnail 1.jpg
convert -resize ”100x100” images/1.jpg thumb/1.jpg
� �Updating thumbnail 4.jpg
convert -resize ”100x100” images/4.jpg thumb/4.jpg
If I edit 4.jpg in images and rerun make, since only 4.jpg‘s timestamp has changed, a thumbnail is generated for that image:
slynux@freedom:~$ make
Updating thumbnail 4.jpg
convert -resize ”100x100” images/4.jpg thumb/4.jpg

12

Makefiles

Writing a script (shell script or Python, etc) to maintain image thumbnails by
monitoring timestamps would have taken many lines of code. With make, we
can do this in just 8 lines of Makefile. Isn’t make awesome?

That’s all about the basics of using the make utility. Happy hacking till we
meet again! This article was originally published in September 2010 issue of the
print magazine.

16 Makefile del driver serial

El archivo Makefile para la construcción del proyecto del driver serial se muestra
a continuación:

CC=avr-gcc
CFLAGS=-Os -DF_CPU=16000000UL -mmcu=atmega328p -c

.PHONY: clean all

EJECUTABLE = appserial.elf
OBJETOS = serial.o main.o

ARCHIVOHEX = appserial.hex

all: $(EJECUTABLE)
avr-objcopy -O ihex -R .eeprom $(EJECUTABLE) $(ARCHIVOHEX)
avrdude -v -v -v -v -p atmega328p -c arduino -P /dev/ttyUSB0 -b 57600 -D -U flash:w:$(ARCHIVOHEX):i

$(EJECUTABLE): $(OBJETOS)
$(CC) $(OBJETOS) -o $@

%.o: %.c
$(CC) $(CFLAGS) $< -o $@

clean:
rm $(EJECUTABLE) $(OBJETOS) $(ARCHIVOHEX)

NOTA: Realizar copy-paste de este ejemplo desde el apunte PDF puede
ocasionar errores de sintaxis.
Recuerde que la sintaxis para reglas es que luego de especificar el

13

Sarath Lakshman

objetivo y los prerequisitos las recetas de construcción comienzan
con un TAB. Si al copiar y pegar encuentra problemas con make se
debe verificar que los espacios en las recetas comienzan con una
caracter TAB.

Cabe aclarar que make elimina archivos intermedios en la construcción de un
proyecto. Estos archivos son dependencias (prerequisitos) de reglas que comien-
zan con el símbolo %.

Por ejemplo, si tuviésemos estas dos reglas :

%.elf: $(OBJETOS)
$(CC) $(OBJETOS) -o $@

%.o: %.c
$(CC) $(CFLAGS) $< -o $@

En este caso, $(OBJETOS) es dependencia de una regla que comienza con%. Y
tambien son archivos intermedios, porque los archivos origen son los %.c presen-
tado en la segunda regla. Para este caso make eliminará los archivo $(OBJETOS).

En el Makefile original presentado en esta sección los archivos objetos no
son eliminados, porque no son dependencias de de ninguna regla que comien-
ce con%.

Para evitar que make en conjunto con este Makefile eliminen archivos inter-
medios en la cadena de reglas se puede utilizar una declaración ’.SECONDARY:
archivos’, la cual instruye amake a no eliminar los archivos intermedios. Ejemplo

.SECONDARY: $(OBJETOS)

17 Referencias

Enlace original de este documento:
http://opensourceforu.com/2012/06/gnu-make-in-detail-for-beginners/

Manual de GNU make:
https://www.gnu.org/software/make/manual/

14

Makefiles

17.1 Licencia y notas de la traducción

All published articles are released under Creative CommonsAttribution-NonCommercial
3.0 Unported License, unless otherwise noted.

GNU Make in Detail for Beginners by Sarath Lakshman on June 9, 20121
Este apunte fue convertido a LATEX para ser utilizado como apunte en la

materia de grado ’Programación de Sistemas Embebidos’ de la Facultad de Infor-
mática, Universidad Nacional del Comahue. Se han realizado modificaciones al
contenido para aclarar ciertos detalles o agregar partes nuevas.

Autores de la versión LATEX :
Rafael Ignacio Zurita (rafa@fi.uncoma.edu.ar)

1Disponible en opensourceforu.com

15

