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FreeRTOS (pronounced "free-arr-toss") is an open source real-time operating system (RTOS) for embedded 

systems. FreeRTOS supports many different architectures and compiler toolchains, and is designed to be 

"small, simple, and easy to use".

FreeRTOS is under active development, and has been since Richard Barry started work on it in 2002. As for 

me, I'm not a developer of or contributor to FreeRTOS, I'm merely a user and a fan. As a result, this chapter 

will favor the "what" and "how" of FreeRTOS's architecture, with less of the "why" than other chapters in 

this book.

Like all operating systems, FreeRTOS's main job is to run tasks. Most of FreeRTOS's code involves prioritizing,

scheduling, and running user-defined tasks. Unlike all operating systems, FreeRTOS is a real-time operating 

system which runs on embedded systems.

By the end of this chapter I hope that you'll understand the basic architecture of FreeRTOS. Most of 

FreeRTOS is dedicated to running tasks, so you'll get a good look at exactly how FreeRTOS does that.

If this is your first look under the hood of an operating system, I also hope that you'll learn the basics about 

how any OS works. FreeRTOS is relatively simple, especially when compared to Windows, Linux, or OS X, but

all operating systems share the same basic concepts and goals, so looking at any OS can be instructive and 

interesting.

3.1. What is "Embedded" and "Real-Time"?
"Embedded" and "real-time" can mean different things to different people, so let's define them as FreeRTOS

uses them.

An embedded system is a computer system that is designed to do only a few things, like the system in a TV 

remote control, in-car GPS, digital watch, or pacemaker. Embedded systems are typically smaller and slower 

than general purpose computer systems, and are also usually less expensive. A typical low-end embedded 

system may have an 8-bit CPU running at 25MHz, a few KB of RAM, and maybe 32KB of flash memory. A 

higher-end embedded system may have a 32-bit CPU running at 750MHz, a GB of RAM, and multiple GB of 

flash memory.

Real-time systems are designed to do something within a certain amount of time; they guarantee that stuff 

happens when it's supposed to.
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A pacemaker is an excellent example of a real-time embedded system. A pacemaker must contract the heart

muscle at the right time to keep you alive; it can't be too busy to respond in time. Pacemakers and other 

real-time embedded systems are carefully designed to run their tasks on time, every time.

3.2. Architecture Overview
FreeRTOS is a relatively small application. The minimum core of FreeRTOS is only three source (.c) files and a

handful of header files, totalling just under 9000 lines of code, including comments and blank lines. A typical

binary code image is less than 10KB.

FreeRTOS's code breaks down into three main areas: tasks, communication, and hardware interfacing.

• Tasks: Almost half of FreeRTOS's core code deals with the central concern in many operating 

systems: tasks. A task is a user-defined C function with a given priority. tasks.c and task.h do all the 

heavy lifting for creating, scheduling, and maintaining tasks. 

• Communication: Tasks are good, but tasks that can communicate with each other are even better! 

Which brings us to the second FreeRTOS job: communication. About 40% of FreeRTOS's core code 

deals with communication. queue.c and queue.h handle FreeRTOS communication. Tasks and 

interrupts use queues to send data to each other and to signal the use of critical resources using 

semaphores and mutexes. 

• The Hardware Whisperer: The approximately 9000 lines of code that make up the base of FreeRTOS 

are hardware-independent; the same code runs whether FreeRTOS is running on the humble 8051 or

the newest, shiniest ARM core. About 6% of FreeRTOS's core code acts a shim between the 

hardware-independent FreeRTOS core and the hardware-dependent code. We'll discuss the 

hardware-dependent code in the next section. 

Hardware Considerations

The hardware-independent FreeRTOS layer sits on top of a hardware-dependent layer. This hardware-

dependent layer knows how to talk to whatever chip architecture you choose. Figure 3.1 shows FreeRTOS's 

layers.

 

FreeRTOS ships with all the hardware-independent as well as hardware-dependent code you'll need to get a 

system up and running. It supports many compilers (CodeWarrior, GCC, IAR, etc.) as well as many processor 

architectures (ARM7, ARM Cortex-M3, various PICs, Silicon Labs 8051, x86, etc.). See the FreeRTOS website 

for a list of supported architectures and compilers.
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FreeRTOS is highly configurable by design. FreeRTOS can be built as a single CPU, bare-bones RTOS, 

supporting only a few tasks, or it can be built as a highly functional multicore beast with TCP/IP, a file system,

and USB.

Configuration options are selected in FreeRTOSConfig.h by setting various #defines. Clock speed, heap size, 

mutexes, and API subsets are all configurable in this file, along with many other options. Here are a few 

examples that set the maximum number of task priority levels, the CPU frequency, the system tick 

frequency, the minimal stack size and the total heap size:

#define configMAX_PRIORITIES      ( ( unsigned portBASE_TYPE ) 5 )
#define configCPU_CLOCK_HZ        ( 12000000UL )
#define configTICK_RATE_HZ        ( ( portTickType ) 1000 )
#define configMINIMAL_STACK_SIZE  ( ( unsigned short ) 100 )
#define configTOTAL_HEAP_SIZE     ( ( size_t ) ( 4 * 1024 ) )

Hardware-dependent code lives in separate files for each compiler toolchain and CPU architecture. For 

example, if you're working with the IAR compiler on an ARM Cortex-M3 chip, the hardware-dependent code

lives in the FreeRTOS/Source/portable/IAR/ARM_CM3/ directory. portmacro.h declares all of the hardware-

specific functions, while port.c and portasm.s contain all of the actual hardware-dependent code. The 

hardware-independent header file portable.h #include's the correct portmacro.h file at compile time. 

FreeRTOS calls the hardware-specific functions using #define'd functions declared in portmacro.h.

Let's look at an example of how FreeRTOS calls a hardware-dependent function. The hardware-independent 

file tasks.c frequently needs to enter a critical section of code to prevent preemption. Entering a critical 

section happens differently on different architectures, and the hardware-independent tasks.c does not want

to have to understand the hardware-dependent details. So tasks.c calls the global macro 

portENTER_CRITICAL(), glad to be ignorant of how it actually works. Assuming we're using the IAR compiler 

on an ARM Cortex-M3 chip, FreeRTOS is built with the file 

FreeRTOS/Source/portable/IAR/ARM_CM3/portmacro.h which defines portENTER_CRITICAL() like this:

#define portENTER_CRITICAL()   vPortEnterCritical()

vPortEnterCritical() is actually defined in FreeRTOS/Source/portable/IAR/ARM_CM3/port.c. The port.c file is 

hardware-dependent, and contains code that understands the IAR compiler and the Cortex-M3 chip. 

vPortEnterCritical() enters the critical section using this hardware-specific knowledge and returns to the 

hardware-independent tasks.c.

The portmacro.h file also defines an architecture's basic data types. Data types for basic integer variables, 

pointers, and the system timer tick data type are defined like this for the IAR compiler on ARM Cortex-M3 

chips:

#define portBASE_TYPE  long              // Basic integer variable type
#define portSTACK_TYPE unsigned long     // Pointers to memory locations
typedef unsigned portLONG portTickType;  // The system timer tick type

This method of using data types and functions through thin layers of #defines may seem a bit complicated, 

but it allows FreeRTOS to be recompiled for a completely different system architecture by changing only the 

hardware-dependent files. And if you want to run FreeRTOS on an architecture it doesn't currently support, 

you only have to implement the hardware-dependent functionality which is much smaller than the 

hardware-independent part of FreeRTOS.



As we've seen, FreeRTOS implements hardware-dependent functionality with C preprocessor #define 

macros. FreeRTOS also uses #define for plenty of hardware-independent code. For non-embedded 

applications this frequent use of #define is a cardinal sin, but in many smaller embedded systems the 

overhead for calling a function is not worth the advantages that "real" functions offer.

3.3. Scheduling Tasks: A Quick Overview

Task Priorities and the Ready List

Each task has a user-assigned priority between 0 (the lowest priority) and the compile-time value of 

configMAX_PRIORITIES-1 (the highest priority). For instance, if configMAX_PRIORITIES is set to 5, then 

FreeRTOS will use 5 priority levels: 0 (lowest priority), 1, 2, 3, and 4 (highest priority).

FreeRTOS uses a "ready list" to keep track of all tasks that are currently ready to run. It implements the 

ready list as an array of task lists like this:

static xList pxReadyTasksLists[ configMAX_PRIORITIES ];  /* Prioritised ready tasks.  */

pxReadyTasksLists[0] is a list of all ready priority 0 tasks, pxReadyTasksLists[1] is a list of all ready priority 1 

tasks, and so on, all the way up to pxReadyTasksLists[configMAX_PRIORITIES-1].

The System Tick

The heartbeat of a FreeRTOS system is called the system tick. FreeRTOS configures the system to generate a 

periodic tick interrupt. The user can configure the tick interrupt frequency, which is typically in the 

millisecond range. Every time the tick interrupt fires, the vTaskSwitchContext() function is called. 

vTaskSwitchContext() selects the highest-priority ready task and puts it in the pxCurrentTCB variable like 

this:

/* Find the highest-priority queue that contains ready tasks. */
while( listLIST_IS_EMPTY( &( pxReadyTasksLists[ uxTopReadyPriority ] ) ) )
{
    configASSERT( uxTopReadyPriority );
    --uxTopReadyPriority;
}

/* listGET_OWNER_OF_NEXT_ENTRY walks through the list, so the tasks of the same 
priority get an equal share of the processor time. */
listGET_OWNER_OF_NEXT_ENTRY( pxCurrentTCB, &( pxReadyTasksLists[ uxTopReadyPriority ] ) );

Before the while loop starts, uxTopReadyPriority is guaranteed to be greater than or equal to the priority of 

the highest-priority ready task. The while() loop starts at priority level uxTopReadyPriority and walks down 

through the pxReadyTasksLists[] array to find the highest-priority level with ready tasks. 

listGET_OWNER_OF_NEXT_ENTRY() then grabs the next ready task from that priority level's ready list.

Now pxCurrentTCB points to the highest-priority task, and when vTaskSwitchContext() returns the hardware-

dependent code starts running that task.

Those nine lines of code are the absolute heart of FreeRTOS. The other 8900+ lines of FreeRTOS are there to

make sure those nine lines are all that's needed to keep the highest-priority task running.



Figure 3.2 is a high-level picture of what a ready list looks like. This example has three priority levels, with 

one priority 0 task, no priority 1 tasks, and three priority 2 tasks. This picture is accurate but not complete; 

it's missing a few details which we'll fill in later.

 

Now that we have the high-level overview out of the way, let's dive in to the details. We'll look at the three 

main FreeRTOS data structures: tasks, lists, and queues.

3.4. Tasks
The main job of all operating systems is to run and coordinate user tasks. Like many operating systems, the 

basic unit of work in FreeRTOS is the task. FreeRTOS uses a Task Control Block (TCB) to represent each task. 

Task Control Block (TCB)

The TCB is defined in tasks.c like this:

typedef struct tskTaskControlBlock
{
  volatile portSTACK_TYPE *pxTopOfStack;                  /* Points to the location of
                                                             the last item placed on 
                                                             the tasks stack.  THIS 
                                                             MUST BE THE FIRST MEMBER 
                                                             OF THE STRUCT. */
                                                         
  xListItem    xGenericListItem;                          /* List item used to place 
                                                             the TCB in ready and 
                                                             blocked queues. */
  xListItem    xEventListItem;                            /* List item used to place 
                                                             the TCB in event lists.*/
  unsigned portBASE_TYPE uxPriority;                      /* The priority of the task
                                                             where 0 is the lowest 
                                                             priority. */
  portSTACK_TYPE *pxStack;                                /* Points to the start of 
                                                             the stack. */
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  signed char    pcTaskName[ configMAX_TASK_NAME_LEN ];   /* Descriptive name given 
                                                             to the task when created.
                                                             Facilitates debugging 
                                                             only. */

  #if ( portSTACK_GROWTH > 0 )
    portSTACK_TYPE *pxEndOfStack;                         /* Used for stack overflow 
                                                             checking on architectures
                                                             where the stack grows up
                                                             from low memory. */
  #endif

  #if ( configUSE_MUTEXES == 1 )
    unsigned portBASE_TYPE uxBasePriority;                /* The priority last 
                                                             assigned to the task - 
                                                             used by the priority 
                                                             inheritance mechanism. */
  #endif

} tskTCB;

The TCB stores the address of the stack start address in pxStack and the current top of stack in pxTopOfStack.

It also stores a pointer to the end of the stack in pxEndOfStack to check for stack overflow if the stack grows 

"up" to higher addresses. If the stack grows "down" to lower addresses then stack overflow is checked by 

comparing the current top of stack against the start of stack memory in pxStack.

The TCB stores the initial priority of the task in uxPriority and uxBasePriority. A task is given a priority when 

it is created, and a task's priority can be changed. If FreeRTOS implements priority inheritance then it uses 

uxBasePriority to remember the original priority while the task is temporarily elevated to the "inherited" 

priority. (See the discussion about mutexes below for more on priority inheritance.)

Each task has two list items for use in FreeRTOS's various scheduling lists. When a task is inserted into a list 

FreeRTOS doesn't insert a pointer directly to the TCB. Instead, it inserts a pointer to either the TCB's 

xGenericListItem or xEventListItem. These xListItem variables let the FreeRTOS lists be smarter than if they 

merely held a pointer to the TCB. We'll see an example of this when we discuss lists later.

A task can be in one of four states: running, ready to run, suspended, or blocked. You might expect each task

to have a variable that tells FreeRTOS what state it's in, but it doesn't. Instead, FreeRTOS tracks task state 

implicitly by putting tasks in the appropriate list: ready list, suspended list, etc. The presence of a task in a 

particular list indicates the task's state. As a task changes from one state to another, FreeRTOS simply moves

it from one list to another.

Task Setup

We've already touched on how a task is selected and scheduled with the pxReadyTasksLists array; now let's 

look at how a task is initially created. A task is created when the xTaskCreate() function is called. FreeRTOS 

uses a newly allocated TCB object to store the name, priority, and other details for a task, then allocates the 

amount of stack the user requests (assuming there's enough memory available) and remembers the start of 

the stack memory in TCB's pxStack member.

The stack is initialized to look as if the new task is already running and was interrupted by a context switch. 

This way the scheduler can treat newly created tasks exactly the same way as it treats tasks that have been 

running for a while; the scheduler doesn't need any special case code for handling new tasks.



The way that a task's stack is made to look like it was interrupted by a context switch depends on the 

architecture FreeRTOS is running on, but this ARM Cortex-M3 processor's implementation is a good 

example:

unsigned int *pxPortInitialiseStack( unsigned int *pxTopOfStack, 
                                     pdTASK_CODE pxCode,
                                     void *pvParameters )
{
  /* Simulate the stack frame as it would be created by a context switch interrupt. */
  pxTopOfStack--; /* Offset added to account for the way the MCU uses the stack on 
                     entry/exit of interrupts. */
  *pxTopOfStack = portINITIAL_XPSR;  /* xPSR */
  pxTopOfStack--;
  *pxTopOfStack = ( portSTACK_TYPE ) pxCode;  /* PC */
  pxTopOfStack--;
  *pxTopOfStack = 0;  /* LR */
  pxTopOfStack -= 5;  /* R12, R3, R2 and R1. */
  *pxTopOfStack = ( portSTACK_TYPE ) pvParameters;  /* R0 */
  pxTopOfStack -= 8;  /* R11, R10, R9, R8, R7, R6, R5 and R4. */
  
  return pxTopOfStack;
}

The ARM Cortex-M3 processor pushes registers on the stack when a task is interrupted. 

pxPortInitialiseStack() modifies the stack to look like the registers were pushed even though the task hasn't 

actually started running yet. Known values are stored to the stack for the ARM registers xPSR, PC, LR, and 

R0. The remaining registers R1 -- R12 get stack space allocated for them by decrementing the top of stack 

pointer, but no specific data is stored in the stack for those registers. The ARM architecture says that those 

registers are undefined at reset, so a (non-buggy) program will not rely on a known value.

After the stack is prepared, the task is almost ready to run. First though, FreeRTOS disables interrupts: We're

about to start mucking with the ready lists and other scheduler structures and we don't want anyone else 

changing them underneath us.

If this is the first task to ever be created, FreeRTOS initializes the scheduler's task lists. FreeRTOS's scheduler 

has an array of ready lists, pxReadyTasksLists[], which has one ready list for each possible priority level. 

FreeRTOS also has a few other lists for tracking tasks that have been suspended, killed, and delayed. These 

are all initialized now as well.

After any first-time initialization is done, the new task is added to the ready list at its specified priority level. 

Interrupts are re-enabled and new task creation is complete.

3.5. Lists
After tasks, the most used FreeRTOS data structure is the list. FreeRTOS uses its list structure to keep track of

tasks for scheduling, and also to implement queues.



 

The FreeRTOS list is a standard circular doubly linked list with a couple of interesting additions. Here's a list 

element:

struct xLIST_ITEM
{
  portTickType xItemValue;                   /* The value being listed.  In most cases
                                                this is used to sort the list in 
                                                descending order. */
  volatile struct xLIST_ITEM * pxNext;       /* Pointer to the next xListItem in the 
                                                list.  */
  volatile struct xLIST_ITEM * pxPrevious;   /* Pointer to the previous xListItem in 
                                                the list. */
  void * pvOwner;                            /* Pointer to the object (normally a TCB)
                                                that contains the list item.  There is
                                                therefore a two-way link between the 
                                                object containing the list item and 
                                                the list item itself. */
  void * pvContainer;                        /* Pointer to the list in which this list
                                                item is placed (if any). */



};

Each list element holds a number, xItemValue, that is the usually the priority of the task being tracked or a 

timer value for event scheduling. Lists are kept in high-to-low priority order, meaning that the highest-

priority xItemValue (the largest number) is at the front of the list and the lowest priority xItemValue (the 

smallest number) is at the end of the list.

The pxNext and pxPrevious pointers are standard linked list pointers. pvOwner is a pointer to the owner of 

the list element. This is usually a pointer to a task's TCB object. pvOwner is used to make task switching fast 

in vTaskSwitchContext(): once the highest-priority task's list element is found in pxReadyTasksLists[], that list 

element's pvOwner pointer leads us directly to the TCB needed to schedule the task.

pvContainer points to the list that this item is in. It is used to quickly determine if a list item is in a particular 

list. Each list element can be put in a list, which is defined as:

typedef struct xLIST
{
  volatile unsigned portBASE_TYPE uxNumberOfItems;
  volatile xListItem * pxIndex;           /* Used to walk through the list.  Points to
                                             the last item returned by a call to 
                                             pvListGetOwnerOfNextEntry (). */
  volatile xMiniListItem xListEnd;        /* List item that contains the maximum 
                                             possible item value, meaning it is always
                                             at the end of the list and is therefore 
                                             used as a marker. */
} xList;

The size of a list at any time is stored in uxNumberOfItems, for fast list-size operations. All new lists are 

initialized to contain a single element: the xListEnd element. xListEnd.xItemValue is a sentinel value which is 

equal to the largest value for the xItemValue variable: 0xffff when portTickType is a 16-bit value and 0xffffffff

when portTickType is a 32-bit value. Other list elements may also have the same value; the insertion 

algorithm ensures that xListEnd is always the last item in the list.

Since lists are sorted high-to-low, the xListEnd element is used as a marker for the start of the list. And since 

the list is circular, this xListEnd element is also a marker for the end of the list.

Most "traditional" list accesses you've used probably do all of their work within a single for() loop or 

function call like this:

for (listPtr = listStart; listPtr != NULL; listPtr = listPtr->next) {
  // Do something with listPtr here...
}

FreeRTOS frequently needs to access a list across multiple for() and while() loops as well as function calls, 

and so it uses list functions that manipulate the pxIndex pointer to walk the list. The list function 

listGET_OWNER_OF_NEXT_ENTRY() does pxIndex = pxIndex->pxNext; and returns pxIndex. (Of course it 

does the proper end-of-list-wraparound detection too.) This way the list itself is responsible for keeping 

track of "where you are" while walking it using pxIndex, allowing the rest of FreeRTOS to not worry about it.



 

The pxReadyTasksLists[] list manipulation done in vTaskSwitchContext() is a good example of how pxIndex is 

used. Let's assume we have only one priority level, priority 0, and there are three tasks at that priority level. 

This is similar to the basic ready list picture we looked at earlier, but this time we'll include all of the data 

structures and fields.

As you can see in Figure 3.3, pxCurrentTCB indicates that we're currently running Task B. The next time 

vTaskSwitchContext() runs, it calls listGET_OWNER_OF_NEXT_ENTRY() to get the next task to run. This 

function uses pxIndex->pxNext to figure out the next task is Task C, and now pxIndex points to Task C's list 

element and pxCurrentTCB points to Task C's TCB, as shown in Figure 3.4.

Note that each struct xListItem object is actually the xGenericListItem object from the associated TCB.
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3.6. Queues
FreeRTOS allows tasks to communicate and synchronize with each other using queues. Interrupt service 

routines (ISRs) also use queues for communication and synchronization.

The basic queue data structure is:

typedef struct QueueDefinition
{
  signed char *pcHead;                      /* Points to the beginning of the queue 
                                               storage area. */
  signed char *pcTail;                      /* Points to the byte at the end of the 
                                               queue storage area. One more byte is 
                                               allocated than necessary to store the 
                                             queue items; this is used as a marker. */
  signed char *pcWriteTo;                   /* Points to the free next place in the 
                                               storage area. */
  signed char *pcReadFrom;                  /* Points to the last place that a queued 
                                               item was read from. */
                                           
  xList xTasksWaitingToSend;                /* List of tasks that are blocked waiting 
                                               to post onto this queue.  Stored in 
                                               priority order. */
  xList xTasksWaitingToReceive;             /* List of tasks that are blocked waiting 
                                               to read from this queue. Stored in 
                                               priority order. */

  volatile unsigned portBASE_TYPE uxMessagesWaiting;  /* The number of items currently
                                                         in the queue. */
  unsigned portBASE_TYPE uxLength;                    /* The length of the queue 
                                                         defined as the number of 
                                                         items it will hold, not the 
                                                         number of bytes. */
  unsigned portBASE_TYPE uxItemSize;                  /* The size of each items that 
                                                         the queue will hold. */
                                         
} xQUEUE;

This is a fairly standard queue with head and tail pointers, as well as pointers to keep track of where we've 

just read from and written to.

When creating a queue, the user specifies the length of the queue and the size of each item to be tracked by

the queue. pcHead and pcTail are used to keep track of the queue's internal storage. Adding an item into a 

queue does a deep copy of the item into the queue's internal storage.

FreeRTOS makes a deep copy instead of storing a pointer to the item because the lifetime of the item 

inserted may be much shorter than the lifetime of the queue. For instance, consider a queue of simple 

integers inserted and removed using local variables across several function calls. If the queue stored 

pointers to the integers' local variables, the pointers would be invalid as soon as the integers' local variables 

went out of scope and the local variables' memory was used for some new value.

The user chooses what to queue. The user can queue copies of items if the items are small, like in the simple

integer example in the previous paragraph, or the user can queue pointers to the items if the items are 

large. Note that in both cases FreeRTOS does a deep copy: if the user chooses to queue copies of items then 

the queue stores a deep copy of each item; if the user chooses to queue pointers then the queue stores a 

deep copy of the pointer. Of course, if the user stores pointers in the queue then the user is responsible for 

managing the memory associated with the pointers. The queue doesn't care what data you're storing in it, it

just needs to know the data's size.



FreeRTOS supports blocking and non-blocking queue insertions and removals. Non-blocking operations 

return immediately with a "Did the queue insertion work?" or "Did the queue removal work?" status. 

Blocking operations are specified with a timeout. A task can block indefinitely or for a limited amount of 

time.

A blocked task—call it Task A—will remain blocked as long as its insert/remove operation cannot complete 

and its timeout (if any) has not expired. If an interrupt or another task modifies the queue so that Task A's 

operation could complete, Task A will be unblocked. If Task A's queue operation is still possible by the time it

actually runs then Task A will complete its queue operation and return "success". However, by the time Task 

A actually runs, it is possible that a higher-priority task or interrupt has performed yet another operation on 

the queue that prevents Task A from performing its operation. In this case Task A will check its timeout and 

either resume blocking if the timeout hasn't expired, or return with a queue operation "failed" status.

It's important to note that the rest of the system keeps going while a task is blocking on a queue; other tasks

and interrupts continue to run. This way the blocked task doesn't waste CPU cycles that could be used 

productively by other tasks and interrupts.

FreeRTOS uses the xTasksWaitingToSend list to keep track of tasks that are blocking on inserting into a 

queue. Each time an element is removed from a queue the xTasksWaitingToSend list is checked. If a task is 

waiting in that list the task is unblocked.

Similarly, xTasksWaitingToReceive keeps track of tasks that are blocking on removing from a queue. Each 

time a new element is inserted into a queue the xTasksWaitingToReceive list is checked. If a task is waiting in

that list the task is unblocked.

Semaphores and Mutexes

FreeRTOS uses its queues for communication between and within tasks. FreeRTOS also uses its queues to 

implement semaphores and mutexes.

What's The Difference?

Semaphores and mutexes may sound like the same thing, but they're not. FreeRTOS implements them 

similarly, but they're intended to be used in different ways. How should they be used differently? Embedded

systems guru Michael Barr says it best in his article, "Mutexes and Semaphores Demystified":

The correct use of a semaphore is for signaling from one task to another. A mutex is meant to be 
taken and released, always in that order, by each task that uses the shared resource it protects. 
By contrast, tasks that use semaphores either signal ["send" in FreeRTOS terms] or wait 
["receive" in FreeRTOS terms] - not both. 

A mutex is used to protect a shared resource. A task acquires a mutex, uses the shared resource, then 

releases the mutex. No task can acquire a mutex while the mutex is being held by another task. This 

guarantees that only one task is allowed to use a shared resource at a time.

Semaphores are used by one task to signal another task. To quote Barr's article:

For example, Task 1 may contain code to post (i.e., signal or increment) a particular semaphore 
when the "power" button is pressed and Task 2, which wakes the display, pends on that same 

http://www.barrgroup.com/Embedded-Systems/How-To/RTOS-Mutex-Semaphore


semaphore. In this scenario, one task is the producer of the event signal; the other the 
consumer. 

If you're at all in doubt about semaphores and mutexes, please check out Michael's article.

Implementation

FreeRTOS implements an N-element semaphore as a queue that can hold N items. It doesn't store any 

actual data for the queue items; the semaphore just cares how many queue entries are currently occupied, 

which is tracked in the queue's uxMessagesWaiting field. It's doing "pure synchronization", as the FreeRTOS 

header file semphr.h calls it. Therefore the queue has a item size of zero bytes (uxItemSize == 0). Each 

semaphore access increments or decrements the uxMessagesWaiting field; no item or data copying is 

needed.

Like a semaphore, a mutex is also implemented as a queue, but several of the xQUEUE struct fields are 

overloaded using #defines:

/* Effectively make a union out of the xQUEUE structure. */
#define uxQueueType           pcHead
#define pxMutexHolder         pcTail

Since a mutex doesn't store any data in the queue, it doesn't need any internal storage, and so the pcHead 

and pcTail fields aren't needed. FreeRTOS sets the uxQueueType field (really the pcHead field) to 0 to note 

that this queue is being used for a mutex. FreeRTOS uses the overloaded pcTail fields to implement priority 

inheritance for mutexes.

In case you're not familiar with priority inheritance, I'll quote Michael Barr again to define it, this time from 

his article, "Introduction to Priority Inversion":

[Priority inheritance] mandates that a lower-priority task inherit the priority of any higher-
priority task pending on a resource they share. This priority change should take place as soon as 
the high-priority task begins to pend; it should end when the resource is released. 

FreeRTOS implements priority inheritance using the pxMutexHolder field (which is really just the 

overloaded-by-#define pcTail field). FreeRTOS records the task that holds a mutex in the pxMutexHolder 

field. When a higher-priority task is found to be waiting on a mutex currently taken by a lower-priority task, 

FreeRTOS "upgrades" the lower-priority task to the priority of the higher-priority task until the mutex is 

available again.

3.7. Conclusion
We've completed our look at the FreeRTOS architecture. Hopefully you now have a good feel for how 

FreeRTOS's tasks run and communicate. And if you've never looked at any OS's internals before, I hope you 

now have a basic idea of how they work.

Obviously this chapter did not cover all of FreeRTOS's architecture. Notably, I didn't mention memory 

allocation, ISRs, debugging, or MPU support. This chapter also did not discuss how to set up or use 

FreeRTOS. Richard Barry has written an excellent book, Using the FreeRTOS Real Time Kernel: A Practical 

Guide, which discusses exactly that; I highly recommend it if you're going to use FreeRTOS.

http://www.freertos.org/Documentation/FreeRTOS-documentation-and-book.html
http://www.freertos.org/Documentation/FreeRTOS-documentation-and-book.html
http://www.eetimes.com/discussion/beginner-s-corner/4023947/Introduction-to-Priority-Inversion
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